天问一号着陆巡视器成功着陆火星乌托邦平原一周后,“祝融号”火星车传来好消息。
国家航天局发布消息称,根据遥测数据判断,5月22日10时40分,“祝融号”火星车已安全驶离着陆平台,到达火星表面,开始巡视探测。
天问一号任务的科学目标是研究火星形貌与地质构造特征、火星表面土壤特征与水冰分布、火星表面物质组成、火星大气电离层及表面气候与环境特征、火星物理场与内部结构等。自2020年7月23日发射以来,探测器在地火转移飞行、环火轨道运行期间,环绕器配置的中分辨率相机、高分辨率相机、矿物光谱分析仪、磁强计等7台科学载荷陆续开机探测,获取科学数据。火面工作期间,火星车将按计划开展巡视区环境感知、火面移动和科学探测,通过配置的地形相机、多光谱相机、次表层探测雷达、表面成分探测仪等6台载荷,对巡视区开展详细探测。同时,由上海航天技术研究院抓总研制的环绕器将运行在中继轨道,为火星车巡视探测提供稳定的中继通信,兼顾开展环绕探测。
环绕器为火星车巡视探测提供稳定的中继通信
值得关注的是,在火星巡视探测期间,“祝融号”就像在月球的“玉兔号”月球车一样,也要面临休眠唤醒任务,这样才能保证其使用寿命。不过,月球车的休眠唤醒,主要解决月球车如何在低温环境下度过漫长而寒冷的月夜的问题。而火星车主要针对火星沙尘暴及火星冬季环境。
可以说,火星的休眠唤醒任务更加复杂、难度更高。这项艰巨的任务,同样由月球车电源产品的研制单位上海航天811所承担。
不同于月球,火星上有大气,当大气运动引起的巨大沙尘暴让火星车受到沙尘的遮盖时,接收到的太阳光能量急剧下降,这时就必须为火星车设计一个“休眠”模式,耐心等待沙尘暴过去。其次,火星上有明显的四季变化,当进入火星深秋后,光照强度会持续减弱,而火星太阳辐照强度仅为月球表面的20%,这时,火星车需要进入长期的“冬眠”,直至第二年的春季到来。
同时,考虑到火星气候的复杂性,火昼时,锂离子蓄电池可能会面临联合供电进而导致充电量不足的情况。为此,811所科研人员为火夜制定了一份休眠唤醒“备份”计划:在火昼转火夜前,对锂离子蓄电池的剩余电量进行判读,当蓄电池的剩余电量不足以支撑火星车度过火夜时,火星车转入休眠状态。
811所电源控制器设计师陈达兴介绍,“与月球车不同的是,火星车锂离子蓄电池不具备保温设备,若没有从-90℃的最低温度恢复到-15℃的工作温度,即使唤醒了,也无法正常开展工作。休眠的时候整器会断电,至于什么时候再唤醒,我们需要先参考锂离子蓄电池的温度。”研制人员给锂离子蓄电池增加了温度继电器,用来判断锂离子蓄电池的温度。当太阳电池重新开始工作后,优先给锂离子蓄电池加热,待加到-15℃左右,温度继电器自动闭合,火星车真正唤醒。
火星乌托邦平原上的祝融号火星车(模拟图)
除了把控更复杂的休眠唤醒,如何将能量获取率达到最大化,也是一大挑战。
深空探测中,太阳能量是航天器唯一能量来源。在火星车上,有四块“特别订制”的太阳能电池阵,为了顺利完成此次火星车的预定任务,它们经历了一段不平凡的研制历程。
火星表面的光谱与地球轨道、月球轨道的光谱不同,这就意味着火星车太阳电池的“与众不同”。811所对太阳电池进行了重新设计,根据火星的光谱作了相应的调整和优化。但受火星车自身体积重量限制,以及火星表面光照条件、火星尘埃等自然环境条件影响,太阳电池阵的发电能力被大大削弱,如何解决这一问题?研制人员创新性地在火星探测任务上首次使用了最大功率跟踪技术,这也是该技术在国内航天领域的首次在轨应用,陈达兴说:“跟踪精度高达98%,相比传统电路,提高了太阳电池20%的利用效率,既解决了火星车能源紧张问题,也在减少太阳电池阵面积的同时减轻了电源产品的重量。”
另外,火星尘埃在太阳电池表面的堆积也会极大影响火星车的能量获取效率。为此,科研人员通过表面处理和结构设计巧妙地在太阳电池玻璃盖片表面做了特殊涂层,表面处理在于降低火星尘埃和太阳电池的相互吸引力,结构设计在于减少两者的接触面积,这些都通过了验证。
栏目主编:刘锟 本文作者:刘锟 文字编辑:刘锟 题图来源:国家航天局
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.